© 2011 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission.

BSR/ASHRAE Addendum aa
to ANSI/ASHRAE Standard 135-2010

Public Review Draft

ASHRAE Standard

Proposed Addendum aa to Standard 135-2010, BACnet—A Data Communication Protocol for Building Automation and Control Networks

Second Public Review (October 2011)
(Draft Shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed addendum, go to the ASHRAE website at http://www.ashrae.org/technology/page/331 and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE web site) remains in effect. The current edition of any standard may be purchased from the ASHRAE Bookstore @ http://www/ashrae.org or by calling 404-636-8400 or 1-800-527-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE web site @ http://www/ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2011. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. Phone: 404-636-8400, Ext1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

AMERICAN SOCIETY OF HEATING,
REFRIGERATING AND AIR-CONDITIONING
ENGINEERS, INC.
1791 Tullie Circle, NE · Atlanta GA 30329-2305

[This foreword and the “rationale” on the following page are not part of this standard. They are merely informative and do not contain requirements necessary for conformance to the standard.]

FOREWORD

The purpose of this addendum is to present a proposed change for public review. These modifications are the result of change proposals made pursuant to the ASHRAE continuous maintenance procedures and of deliberations within Standing Standard Project Committee 135. The proposed changes are summarized below.

135-2010aa-1. Add Channel Object Type
135-2010aa-2. Add WriteGroup Service

In the following document, language to be added to existing clauses of ANSI/ASHRAE 135-2010 and Addenda is indicated through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain type is used throughout. Only this new and deleted text is open to comment at this time. All other material in this addendum is provided for context only and is not open for public review comment except as it relates to the proposed changes.

135-2010aa-1 Add Channel Object Type.

Rationale
There are various scenarios, such as the management of groups of lighting outputs, where it is desirable to cause the same value to be written to multiple object properties in multiple objects, initiated by the same event. Using multiple BACnet WriteProperty commands can cause skewing of command execution when more than a very small number of writes must take place. Using WritePropertyMultiple is inefficient because the value and destination object identifier and property identifier must be specified for each destination each time the write occurs. It is desirable to define the destinations ahead of time as in Command objects, but without the rigidity of the Command’s predefined values and mode orientation.

[Add new Clause 12.X, p. 410]

12.X Channel Object Type

The Channel object type defines a standardized object used to forward a single received value to a collection of object properties. The collection of object properties may include any combination of object types, as well as properties of different data types. The coercion of the datatype from the value written to the Channel object Present_Value to the datatypes required by the object properties is controlled by coercion rules defined in Clause 12.X.5.1.
Each Channel object is associated with a single logical “channel” in the range 0..65535. Multiple Channel object instances may be associated with a given channel number.
Each Channel object may be a member of zero or more “control groups” to facilitate writing to Channel objects with the WriteGroup service. The Channel object and its properties are summarized in Table 12-X and described in detail in this subclause..
The Channel object is intended for value distribution and does not maintain a state. Therefore, it does not act on its own and does not contain a priority array. When the Present_Value property of this object is written by the WriteProperty, WritePropertyMultiple, or WriteGroup services, and a ‘Priority’ is provided in the write, this object shall use this same priority to command the referenced properties. Figure 12-X1 illustrates the behavior of the Channel object.

Figure 12-X1. Channel object behavior
When the WriteGroup service is used, potentially many devices may be affected because WriteGroup is usually broadcast. As a result, WriteGroup includes a group number parameter that restricts the effect to only those receiving devices that are members of that group. The WriteGroup further restricts the targets for writing to those Channel objects within those devices that are associated with the specified channel number(s).
Devices that contain Channel objects shall also support the WriteGroup service.

Figure 12-X2. Control Groups limit WriteGroup effect to specific Channel objects across many devices

The object and its properties are summarized in Table 12-X1 and described in detail in this subclause.
Table 12-X1. Properties of the Channel Object
	Property Identifier
	Property Datatype
	Conformance
Code

	Object_Identifier
	BACnetObjectIdentifier
	R

	Object_Name
	CharacterString
	R

	Object_Type
	BACnetObjectType
	R

	Description
	CharacterString
	O

	Present_Value
	BACnetChannelValue
	W

	Last_Priority
	Unsigned
	R

	Write_Status
	BACnetWriteStatus
	R

	Status_Flags
	BACnetStatusFlags
	R

	Reliability
	BACnetReliability
	O

	Out_Of_Service
	BOOLEAN
	R

	List_Of_Object_Property_References
	BACnetARRAY[N] of
 BACnetDeviceObjectPropertyReference
	W1

	Execution_Delay
	BACnetARRAY[N] of Unsigned
	O1

	Allow_Group_Delay_Inhibit
	BOOLEAN
	O

	Channel_Number
	Unsigned16
	W

	Control_Groups
	BACnetARRAY[N] of Unsigned32
	W

	Profile_Name
	CharacterString
	O

1 These array properties shall be the same size.

12.X.1 Object_Identifier
This property, of type BACnetObjectIdentifier, is a numeric code that is used to identify the object. It shall be unique within the BACnet Device that maintains it.
12.X.2 Object_Name
This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet Device that maintains it. The minimum length of the string shall be one character. The set of characters used in the Object_Name shall be restricted to printable characters.
12.X.3 Object_Type
This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of this property shall be CHANNEL.
12.X.4 Description
This property, of type CharacterString, is a string of printable characters whose content is not restricted.
12.X.5 Present_Value (Commandable)
This property, of type BACnetChannelValue, shall indicate the value most recently written to the Present_Value.

When Present_Value is written, the Channel object shall propagate that value to each of the members in the List_Of_Object_Property_References except those members whose Object Identifiers object instance 4194303 representing an empty reference. During the writing of values to members, Write_Status shall be IN_PROGRESS. At the end of writing all values, Write_Status shall change to SUCCESSFUL or FAILED based on the results of these writes. If Write_Status is SUCCESSFUL, then the Reliability property shall be reevaluated as described in 12.X.9

When Present_Value is written with a 'Priority' parameter, the resulting writes to the members of the List_Of_Object_Property_References shall also use that 'Priority' parameter. See 19.2.1.6. If the Channel object supports device-object-property references, then it may elect to use individual WriteProperty or WritePropertyMultiple, or a combination of both, to achieve the writing, as a local matter.

The initial value of the Present_Value property shall be NULL. This initial value shall not be automatically written to the properties listed in List_Of_Object_Property_References.

Attempts to write to Present_Value using WriteProperty service when Write_Status is IN_PROGRESS shall cause a Result(-) to be returned with an error class of OBJECT and an error code of BUSY.

	Example		List_Of_Object_Property_References [1]=(101,AV27;Present_Value)

			List_Of_Object_Property_References [2]=(102,AO14;Present_Value)

			List_Of_Object_Property_References [3]=(103,AO5;Present_Value)

			List_Of_Object_Property_References [4]=(104,AV123;Present_Value)

			Execution_Delay[1]=0

			Execution_Delay[2]=100

			Execution_Delay[3]=0

			Execution_Delay[4]=200

	t1. Present_Value written with value X

	t2. If write was WriteProperty or WritePropertyMultiple, then Channel object returns
 Result(+) or Result(-)

	t3. Write_Status = IN_PROGRESS
IF write was WriteGroup AND
 WriteGroup has ‘Inhibit Delay’=TRUE AND
 Allow_Group_Delay_Inhibit=TRUE, THEN
{
t4. WriteProperty(101,AV27,Present_Value,X)
t5. WriteProperty(102,AO14,Present_Value,X)
t6. WriteProperty(103,AO5,Present_Value,X)
t7. WriteProperty(104,AV123,Present_Value,X)
t8. Write_Status = SUCCESSFUL
t9. Reliability = NO_FAULT_DETECTED
}
ELSE
{
t4. WriteProperty(101,AV27,Present_Value,X)
t5. WriteProperty(103,AO5,Present_Value,X)
t3+100ms. WriteProperty(102,AO14,Present_Value,X)
t3+200ms. WriteProperty(104,AV123,Present_Value,X)
t3+200ms+y Write_Status = SUCCESSFUL
t3+200ms+y Reliability = NO_FAULT_DETECTED

	}

Figure 12-X3: Channel Object Execution Timeline

12.X.5.1 Datatype Coercion of Present_Value
Since List_Of_Object_Property_References can include object properties of different data types, the value written to Present_Value may require coercion to another datatype. The rules governing how these coercions occur are summarized in Table 12-X2. In those cases where No Coercion (NC) is indicated in Table 12-X2, the result shall be considered as SUCCESSFUL in Write_Status.

Table 12-X2 – Datatype Coercion Rules
	
	Datatype of referenced property

	Datatype in Present_Value write
	unknown
	BOOLEAN
	Unsigned
	INTEGER
	REAL
	Double
	OCTET STRING
	CharacterString
	BIT STRING
	ENUMERATED
	Date
	Time
	BACnetObjectIdentifier
	BACnetLightingCommand

	NULL
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	NC
	ID

	BOOLEAN
	NC
	NC
	2
	2
	2
	2
	ID
	ID
	ID
	2
	ID
	ID
	ID
	ID

	Unsigned
	NC
	1
	NC
	3
	3
	3
	ID
	ID
	ID
	NC
	ID
	ID
	NC
	ID

	INTEGER
	NC
	1
	4
	NC
	4
	4
	ID
	ID
	ID
	4
	ID
	ID
	ID
	ID

	REAL
	NC
	1
	5
	5
	NC
	5
	ID
	ID
	ID
	5
	ID
	ID
	ID
	ID

	Double
	NC
	1
	6
	6
	6
	NC
	ID
	ID
	ID
	6
	ID
	ID
	ID
	ID

	OCTET STRING
	NC
	ID
	ID
	ID
	ID
	ID
	NC
	ID
	ID
	ID
	ID
	ID
	ID
	ID

	CharacterString
	NC
	ID
	ID
	ID
	ID
	ID
	ID
	NC
	ID
	ID
	ID
	ID
	ID
	ID

	BIT STRING
	NC
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	NC
	ID
	ID
	ID
	ID
	ID

	ENUMERATED
	NC
	1
	NC
	3
	3
	3
	ID
	ID
	ID
	NC
	ID
	ID
	ID
	ID

	Date
	NC
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	NC
	ID
	ID
	ID

	Time
	NC
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	NC
	ID
	ID

	BACnetObjectIdentifier
	NC
	ID
	NC
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	NC
	ID

	BACnetLightingCommand
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	ID
	NC

NC=No Coercion ID=Invalid Datatype
12.X.5.2 Coercion Rule 1 – Numeric to BOOLEAN
The numeric value is mapped as 0=FALSE and anything else is TRUE.
12.X.5.3 Coercion Rule 2 – BOOLEAN to Numeric
The Boolean value is mapped as FALSE→0 and TRUE→1.
12.X.5.4 Coercion Rule 3 – Unsigned to Numeric
The Unsigned value is mapped directly to the target datatype. The Unsigned value shall be limited to 2147483647. The REAL value shall be limited in precision to seven significant digits. Values outside this limit shall cause Write_Status to indicate FAILURE when the List_Of_Object_Property_References has been completely processed.
12.X.5.5 Coercion Rule 4 – INTEGER to Numeric
The INTEGER value is mapped directly to the target datatype. The Unsigned value shall be limited to 0 to 2147483647. The REAL value shall be limited in precision to seven significant digits. Values outside these limits shall cause Write_Status to indicate FAILURE when the List_Of_Object_Property_References has been completely processed.
12.X.5.6 Coercion Rule 5 – REAL to Numeric
The REAL value is mapped directly to the target datatype. The Unsigned value shall be limited to 0 to 2147483000. The INTEGER value shall be limited to -2147483000 to 214783000. Values outside these limits shall cause Write_Status to indicate FAILURE when the List_Of_Object_Property_References has been completely processed.

12.X.5.7 Coercion Rule 6 – Double to Numeric
The Double value is mapped directly to the target datatype. The Unsigned value shall be limited to 0 to 2147483000. The INTEGER value shall be limited to -2147483000 to 214783000. The REAL value shall be limited to 3.4*10±38. Values outside these limits shall cause Write_Status to indicate FAILURE when the List_Of_Object_Property_References has been completely processed.
12.X.5.8 Handling of Coercion Failures
In any case of coercion failure the Write_Status shall indicate FAILURE, but nonetheless all of the List_Of_Object_Property_References shall be processed regardless.
12.X.6 Last_Priority
This read-only property, of type Unsigned, shall convey the priority at which the Present_Value was most recently written (1…16). If an attempt was made to write to the Present_Value without the 'Priority' parameter, a default priority of 16 (the lowest priority) shall be assumed. The initial value of Last_Priority shall be 16.
12.X.7 Write_Status
This property, of type BACnetWriteStatus, shall be set to IDLE initially. This property shall be set to IN_PROGRESS when a value is written to the Present_Value property indicating that the Channel object has begun processing the List_Of_Object_Property_References.

Once all of the writes have been attempted by the Channel object, the Write_Status property shall be set to either SUCCESSFUL or FAILED. The SUCCESSFUL value indicates that the Channel object has processed all of the properties in List_Of_Object_Property_References and did not receive any errors, rejects, or aborts. The FAILED value indicates that the Channel object has processed all of the properties in List_Of_Object_Property_References and received an error, reject, or abort for at least one of the writes. A special exception shall be the writing of a NULL value. If a NULL value is written and WriteProperty or WritePropertyMultiple services subsequently receive an ERROR INVALID_DATATYPE or REJECT INVALID_PARAMETER_DATA_TYPE, it shall not be treated as a FAILED value. This is specifically to allow Channel objects to point to both commandable and non-commandable properties with the same channel.

If List_Of_Object_Property_References is empty, this property shall remain set to IDLE.
12.X.8 Status_Flags
This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of a Channel object. Two of the flags are associated with the values of another property of this object. A more detailed status could be determined by reading the property that is linked to this flag. The relationship between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM	Logical	FALSE (0).

FAULT	Logical	TRUE (1) if the Reliability property is present and does not have a value of NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN	Logical TRUE (1) if the point has been overridden by some mechanism local to the BACnet Device. In this context, "overridden" is taken to mean that the Present_Value property is not changeable through BACnet services. Otherwise, the value is logical FALSE (0).

OUT_OF_SERVICE	Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise logical FALSE (0).

12.X.9 Reliability
This property, of type BACnetReliability, provides an indication of whether the object is "reliable" as far as the BACnet Device or operator can determine. If the Write_Status property indicates FAILED, the value of the Reliability property shall provide an indication of the type of failure that occurred. If one or more member values cannot be written because of a communication failure, the value of the Reliability property shall be COMMUNICATION_FAILURE. If one or more member values cannot be written because of invalid or inconsistent configuration, the value of the Reliability property shall be CONFIGURATION_ERROR. Other errors that may occur during the processing of writes to Present_Value shall be PROCESS_ERROR conditions. If the conditions for a PROCESS_ERROR, CONFIGURATION_ERROR, or COMMUNICATION_FAILURE are present at the same time, or some other error condition occurs, the selection of which value to use shall be a local matter.
12.X.10	Out_Of_Service
This property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the forwarding mechanism that the object represents is not in service. This means that changes to the Present_Value property are decoupled from the forwarding mechanism when the value of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT flag of the Status_Flags property shall be decoupled from the forwarding mechanism when Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the Present_Value and Reliability properties may still be changed to any value as a means of simulating specific fixed conditions or for testing purposes. Other functions that depend on the state of the Present_Value or Reliability properties shall respond to changes made to these properties while Out_Of_Service is TRUE, as if those changes had occurred and been passed on to the forwarding mechanism. Since the Channel object does not directly implement command prioritization, the Present_Value property shall not be required to implement the BACnet command prioritization mechanism when Out_Of_Service is TRUE. See Clause 19.
12.X.11 List_Of_Object_Property_References
This property, of type Array of BACnetDeviceObjectPropertyReference, specifies the Device Identifiers, Object Identifiers, and Property Identifiers of the properties to be written with the same value that is written to Present_Value.

This property may be restricted to only support references to objects inside of the device containing the Channel object. If the property is restricted to referencing objects within the containing device, an attempt to write a reference to an object outside the containing device into this property using WriteProperty service shall cause a Result(-) to be returned with an error class of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property is set to reference an object outside the device containing the Channel object, the method used for writing to the referenced property value for the purpose of controlling the property is a local matter. If an implementation chooses to use WritePropertyMultiple as the preferred method of writing to the referenced property, then the device containing the Channel object shall be capable of using WriteProperty to complete writes to devices that do not support WritePropertyMultiple, or that fail before completing all required writes. If WritePropertyMultiple fails for one element, the remaining elements shall be retried as WritePropertyMultiple or WriteProperty as a local matter.
12.X.11.1 Empty References
Unused references shall contain an empty reference indicated by a BACnetObjectIdentifier with an instance of 4194303. Non-empty references shall not allow the use of instance 4194303 in conjunction with any other object type.
12.X.11.2 Initializing New Array Elements When the Array Size is Increased
If the size of this array is increased by writing to array index zero, each new array element shall contain an empty reference. The size of Execution_Delay shall be automatically increased to be the same.
12.X.12 Execution_Delay
This optional property, of type Array of Unsigned, shall indicate an execution delay in milliseconds for each value to be written in the List_Of_Object_Property_References when the Channel object’s Present_Value is written. A value of zero indicates no delay. A non-zero execution delay value shall cause a delay, by that many milliseconds, in the writing to the corresponding referenced value. The resolution of Execution_Delay shall be a local matter. If present, the Execution_Delay property shall be writable. All delay periods shall "start" at the same time. So, a write of A,B(delay 100),C, D(delay 200) shall immediately write A and C, but delay the writing of B by 100 milliseconds and D by 200 milliseconds. Multiple delayed values shall execute their corresponding delays in parallel (see Figure 12-X3).
12.X.12.1 Initializing New Array Elements When the Array Size is Increased
If the size of this array is increased by writing to array index zero, each new array element shall contain zero. The size of List_Of_Object_Property_References shall be automatically increased to be the same.
12.X.13 Allow_Group_Delay_Inhibit
This optional property, of type BOOLEAN, shall indicate whether WriteGroup service writes to this object, that specify ‘Inhibit Delay’=TRUE, may override any execution delay specified in this object. Execution_Delay shall always occur as the result of WriteProperty or WritePropertyMultiple. In the case of WriteGroup, Execution_Delay shall always occur unless the WriteGroup service parameter ‘Inhibit Delay’ is TRUE, and the Channel object property Allow_Group_Delay_Inhibit is present and has the value TRUE.
12.X.14 Channel_Number
This property, of type Unsigned16, shall indicate the logical channel number that this Channel object is associated with when the Channel object Present_Value is written to using the WriteGroup service.
12.X.15 Control_Groups
This property, of type BACnetARRAY of Unsigned32, shall indicate those logical control groups of which this Channel object is a member. This array shall contain at least one entry. Unused array slots shall contain the value zero, and control group zero shall mean “no assignment.” Control_Groups is required to be writable, and it shall be permitted to configure the membership of the Channel object in arbitrary groups by writing the control group numbers into this array in any order, up to the maximum number of simultaneous groups supported by the Channel object. Duplicate entries specifying the same group number shall be permitted. The maximum size of the Control_Groups array shall be a local matter.
12.X.16 Profile_Name
This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format, followed by a dash. All subsequent characters are administered by the organization registered with that vendor identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that publishes and maintains the profile document named by the remainder of the profile name. This vendor identifier need not have any relationship to the vendor identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified here. This standard defines only the format of the names of profiles. The definition of the profiles themselves is outside the scope of this standard.

[Change Clause 19.2.1, p. 533]
[bookmark: _Toc410805976][bookmark: _Toc410806054][bookmark: _Toc284897414]19.2.1 Prioritization Mechanism
For BACnet objects, commands are prioritized based upon a fixed number of priorities that are assigned to command-issuing entities. A prioritized command (one that is directed at a commandable property of an object) is performed via a WriteProperty service request or a WritePropertyMultiple service request. The request primitive includes a conditional 'Priority' parameter that ranges from 1 to 16. Each commandable property of an object has an associated priority table that is represented by the a Priority_Array property. The Priority_Array consists of an array of commanded values in order of decreasing priority. The first value in the array corresponds to priority 1 (highest), the second value corresponds to priority 2, and so on, to the sixteenth value that corresponds to priority 16 (lowest).
...

[Change Clause 19.2.1.1, p. 534]
[bookmark: _Toc410805977][bookmark: _Toc410806055]19.2.1.1	Commandable Properties
The prioritization scheme is applied to certain properties of objects. The standard commandable properties and objects are as follows:

			 OBJECT		 COMMANDABLE PROPERTY
			...
			BitString Value			Present_Value
			Channel				Present_Value (see 19.2.1.6)
			CharacterString Value		Present_Value
			...

The designated properties of the Analog Output, Binary Output, Multi-state Output, and Access Door objects are commandable (prioritized) by definition. The designated properties of the Analog Value, Binary Value, Multi-state Value, BitString Value, Channel, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Large Analog Value, OctetString Value, Integer Value, Time Value, Time Pattern Value, and Positive Integer Value objects may optionally be commandable. Individual vendors, however, may decide to apply prioritization to any of the vendor-specified properties. These additional commandable properties shall have associated Priority_Array and Relinquish_Default properties with appropriate names. See Clause 23.3. The Channel object is a special exception, see Clause 19.2.1.6.

[Add new Clause 19.2.1.6, p. 537]
19.2.1.6 Prioritization for Channel Objects
Channel objects have commandable Present_Value properties, even though the Channel object itself does not contain Priority_Array or Relinquish_Default properties. The Channel object passes the value written to Present_Value on to another object property, which may itself be commandable. In this case, any priority provided when the Channel object Present_Value is written is propagated on to its constituent member references. The Last_Priority property of the Channel object remembers the most recently provided priority value.

[Add new subclauses to Clause K.1, p. 855]

[bookmark: _Toc487444173][bookmark: _Toc210700870]K.1.X1 BIBB - Data Sharing-WriteGroup-A (DS-WG-A)	
The A device uses unicast, multicast or broadcast WriteGroup to target Channel object(s) in device B. The A device shall be capable of specifying any group number and any channel number.

	BACnet Service
	Initiate
	Execute

	WriteGroup
	x
	

The A device modifies object property values in device B by initiating WriteGroup service requests that affect Channel objects in device B.
[bookmark: _Toc487444174][bookmark: _Toc210700871]K.1.X2 BIBB - Data Sharing-WriteGroup-Internal-B (DS-WG-I-B)	
The B device shall contain one or more Channel objects that may be influenced by WriteGroup service requests from device A.

	BACnet Service
	Initiate
	Execute

	WriteGroup
	
	x

Devices claiming conformance to DS-WG-I-B shall support configuration of Channel object BACnetDeviceObjectPropertyReference values that contain references to objects inside of device B only.
K.1.X3 BIBB - Data Sharing-WriteGroup-External-B (DS-WG-E-B)	
The B device shall contain one or more Channel objects that may be influenced by WriteGroup service requests from device A.

	BACnet Service
	Initiate
	Execute

	WriteGroup
	
	x

	WriteProperty
	x
	

Devices claiming conformance to DS-WG-E-B shall also support DS-WG-I-B and DS-WP-A. The B device shall also support configuration of Channel object BACnetDeviceObjectPropertyReference values that contain Device Instances outside of device B, and shall be capable of initiating WriteProperty and optionally WritePropertyMultiple.

 [Change Clause 21, BACnetObjectType and BACnetObjectTypesSupported productions, p. 609]

BACnetObjectTypes ::= ENUMERATED { -- see below for numerical order
…	
calendar			(6),
channel			(n),
...
-- see time-value		(50),
-- see channel		(n),
…
}

BACnetObjectTypesSupported ::= BIT STRING {
...
time-value		(50),
channel			(n)
}

[Change Clause 21, BACnetPropertyIdentifier production, p. 613]

BACnetPropertyIdentifier ::= ENUMERATED { -- see below for numerical order
...
all				(8),
allow-group-delay-inhibit		(n),
...
change-of-state-time		(16),
channel-number			(n+1),
...	
configuration-files		(154),
control-groups			(n+2),
...
event-parameters			(83),
execution-delay			(n+3),
...
last-notify-record			(173),
last-priority			(n+4),
...
window-samples			(148),
write-status			(n+5),
...
-- see event-message-texts		(351),
-- see allow-group-delay-inhibit	(n),
-- see channel-number		(n+1),
-- see control-groups		(n+2),
-- see execution-delay		(n+3),
-- see last-priority		(n+4),
-- see write-status			(n+5)
}

[Add new production to Clause 21, p. 588]

BACnetChannelValue ::= CHOICE {
	null			NULL,
	real			REAL,	
	enumerated		ENUMERATED,
	unsigned		Unsigned,
	boolean			BOOLEAN,
	signed			INTEGER,
	double			Double,
	time			Time,
	characterString		CharacterString,
	octetString		OCTET STRING,
	bitString			BIT STRING,
	date			Date,
objectid			BACnetObjectIdentifier,
lightingCommand	[0] BACnetLightingCommand [reviewer note: this is defined in Addendum 135-2010i]
}	

[Add new production to Clause 21, p. 630]

BACnetWriteStatus ::= ENUMERATED {
	idle		0,
	in-progress	1,
	successful	2,
	failed		3
}	

[Change Clause 21, BACnetPropertyStates production, p.625]

BACnetPropertyStates ::= CHOICE {
-- This production represents the possible datatypes for properties that
-- have discrete or enumerated values. The choice must be consistent with the
-- datatype of the property referenced in the Event Enrollment Object.
	...
	backup-state		[36] BACnetBackupState,
	write-status		[n] BACnetWriteStatus,
	...
	}

135-2010aa-2 Add WriteGroup Service.

Rationale
There are various scenarios, such as the management of groups of lighting outputs, where it is desirable to cause a large number of changes to occur, synchronized to a particular starting event. Using traditional BACnet WriteProperty commands can cause skewing of command execution when more than a very small number of writes must take place, for example, when multiple devices are involved in the same grouping because each device must be written to with a separate WriteProperty message.

[Add new Clause 15.X, p. 489]
15.X	WriteGroup Service
The purpose of WriteGroup is to facilitate the efficient distribution of values to a large number of devices and objects. WriteGroup provides compact representations for data values that allow rapid transfer of many values. See Clause 12-X and Figure 12-X1. [referenced clauses defined in section aa-1]

The WriteGroup service is used by a sending BACnet-user to update arbitrary Channel objects’ Present_Values for a particular numbered control group. The WriteGroup service is an unconfirmed service. Upon receipt of a WriteGroup service request, all devices that are members of the specified control group shall write to their corresponding Channel objects' Present_Value properties with the value applicable to the Channel Number, if any. A device shall be considered to be a member of a control group if that device has one or more Channel objects for which the ‘Group Number’ from the service appears in its Control_Groups property. If the receiving device does not contain one or more Channel objects with matching channel numbers, then those values shall be ignored.

The WriteGroup service may be unicast, multicast, broadcast locally, on a particular remote network, or using the global BACnet network address. Since global broadcasts are generally discouraged, the use of multiple directed broadcasts is preferred.
15.X.1	WriteGroup Service Structure
The structure of the WriteGroup service primitive is shown in Table 15-X. The terminology and symbology used in this table are explained in 5.6.

Table 15-X. Structure of WriteGroup Service Primitive
	Parameter Name
	Req
	Ind

	 Argument
 Group Number
 Write Priority
 Change List
 Inhibit Delay
	M
M
M
M
U
	M(=)
M(=)
M(=)
M(=)
U(=)

15.X.1.1	Argument
The 'Argument' parameter shall convey the parameters for the WriteGroup unconfirmed service request.
15.X.1.1.1	Group Number
This parameter is an unsigned integer in the range 1 – 4,294,967,295 that represents the control group to be affected by this request. Control group zero shall never be used and shall be reserved. WriteGroup service requests containing a zero value for 'Group Number' shall be ignored.
15.X.1.1.2	Write Priority
This parameter is an unsigned integer in the range 1-16 that represents the priority for writing that shall apply to any channel value changes that result in writes to properties of BACnet objects.
15.X.1.1.3	Change List
This parameter shall specify a list of BACnetGroupChannelValue values containing at least one value. The list consists of (channel number, overridingPriority, value) tuples representing each channel number whose value is to be updated. Channel numbers shall range from 0 to 65535 where the channel number corresponds directly to the Channel_Number property of a Channel object. The optional overridingPriority allows specific values to be written with some priority other than that specified by Write_Priority property. BACnetGroupChannelValue values convey BACnetChannelValue values that are any primitive application datatype or BACnetLightingCommand. The NULL value represents ‘relinquish control’ as with commandable object properties. See Clause 19.
15.X.1.1.4	Inhibit Delay
This optional parameter shall specify whether Channel objects whose Allow_Group_Delay_Inhibit properties have a value of TRUE shall inhibit any execution delay specified in their Execution_Delay property. If the ‘Inhibit Delay’ parameter is absent or FALSE, then execution delay(s) shall occur according to the Execution_Delay property.
15.X.2	WriteGroup Service Procedure
Since this is an unconfirmed service, no response primitives are expected. The sending BACnet-user shall transmit the WriteGroup unconfirmed request using a unicast, multicast or broadcast address. A broadcast may be sent locally, to a remote BACnet network number, or using the global BACnet network address.

If the 'Group Number' is non-zero, and the receiving BACnet-user has been configured to be a member of the control group 'Group Number' by virtue of having that group number in any of the array elements of the Control_Groups property of any of its Channel objects, then for each (channel number, overridingPriority, value) tuple provided in the 'Change List' parameter, the receiving BACnet-user shall attempt to write to the Channel object(s) whose Channel_Number property(s) match that channel number with the indicated value. If no Channel object’s Channel_Number property matches the provided channel number, then that value shall be ignored.

If the optional parameter ‘overridingPriority’ is provided, it shall specify the priority for writing. Otherwise the 'Write Priority' parameter shall specify the priority for writing.

If a BACnetGroupChannelValue specifies a NULL value, it shall serve the same function as if NULL had been used with WriteProperty.

The failure of any particular write shall not prevent the remaining writes from taking place.

[Change Clause 21, BACnetUnconfirmedServiceChoice production, p. 573]

BACnetUnconfirmedServiceChoice ::= ENUMERATED {
	...
	utcTimeSynchronization		(9),
	writeGroup			(n)
	}

[Change Clause 21, BACnetUnconfirmed-Service-Request production, p. 573]

BACnet-Unconfirmed-Service-Request ::= CHOICE {

	utcTimeSynchronization	[9] UTCTimeSynchronization-Request,
	writeGroup		[n] WriteGroup-Request
	}

[Add new production to Clause 21, under "Unconfirmed Remote Device Management Services", p. 574]

WriteGroup-Request ::= SEQUENCE {
	groupNumber		[0] Unsigned32,
	writePriority		[1] Unsigned (1..16),
	changeList		[2] SEQUENCE of BACnetGroupChannelValue,
	inhibitDelay		[3] BOOLEAN OPTIONAL
	}

[Add new production to Clause 21, p. 603]

BACnetGroupChannelValue ::= SEQUENCE {
	channel			[0] Unsigned16,
	overridingPriority	[1] Unsigned (1..16) OPTIONAL,
	value			BACnetChannelValue
	}

 [Change Clause 21, BACnetServicesSupported production, p.628]

BACnetServicesSupported ::= BIT STRING {
	...
-- Object Access Services
	addListElement		(8),
	…
-- writeGroup		(n),
writeProperty		(15),
	…
-- Services added after 1995
readRange		(35), -- Object Access Service
...
getEventInformation	(39) -- Alarm and Event Service
writeGroup		(n) -- Object Access Services
	}

 [Add new subclauses to Clause E.3, p. 769]

E.3.X1 Example #1 of WriteGroup Service
We wish to set control group 23 channel 268=1111, channel 269=2222, priority for writing is 8.

Service =		WriteGroup
'Group Number' =	23
'Write Priority =		8
'Change List' =		((268,,1111),(269,,2222))
E.3.X2 Example #2 of WriteGroup Service
We wish to set control group 23 channel 12=67.0, channel 13=72.0, priority for writing is 8, inhibit execution delays.

Service =		WriteGroup
'Group Number' =	23
'Write Priority =		8
'Change List' =		((12,,67.0),(13,,72.0))
‘Inhibit Delay’ =		TRUE
E.3.X3 Example #3 of WriteGroup Service
We wish to set control group 23 channel 12=1111 at priority 8, channel 13="ABC" at priority 10.

Service =		WriteGroup
'Group Number' =	23
'Write Priority =		8
'Change List' =		((12,,1111),(13,10,"ABC"))

[Add new subclauses to Clause F.3, p.794]

F.3.X Encoding for Example E.3.X1 - WriteGroup Service, Example #1
X'10'			PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'0?'			Service Choice=?? (WriteGroup-Request)

X'09'			SD Context Tag 0 (Group Number, L=1)
X'17'			23
X'19'			SD Context Tag 1 (Write Priority, L=1)
X'08'			8
X'2E'			PD Opening Tag 2 (Change List)
 X'0A'			SD Context Tag 0 (Channel, L=2)
 X'010C'		268
 X'22'			Application Tag 2 (Unsigned, L=2) (value)
 X'0457'		1111
 X'0A'			SD Context Tag 0 (Channel, L=2)
 X'010D'		269
 X'22'			Application Tag 2 (Unsigned, L=2) (value)
 X'08AE'		2222
X'2F'			PD Closing Tag 2

Note that no response is required for this message since it is of type unconfirmed.

F.3.Y Encoding for Example E.3.X2 - WriteGroup Service, Example #2
X'10'			PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'0?'			Service Choice=?? (WriteGroup-Request)

X'09'			SD Context Tag 0 (Group Number, L=1)
X'17'			23
X'19'			SD Context Tag 1 (Write Priority, L=1)
X'08'			8
X'2E'			PD Opening Tag 2 (Change List)
 X'09'			SD Context Tag 0 (Channel, L=1)
 X'0C'			12
 X'44'			Application Tag 4 (Real, L=4) (value)
 X'42860000'		67.0
 X'09'			SD Context Tag 0 (Channel, L=1)
 X'0D'			13
 X'44'			Application Tag 4 (Real, L=4) (value)
 X'42900000'		72.0
X'2F'			PD Closing Tag 2
X’39’			SD Context Tag 3 (Inhibit Delay, L=1)
X’01’			1

Note that no response is required for this message since it is of type unconfirmed.
F.3.Z Encoding for Example E.3.X3 - WriteGroup Service, Example #3
X'10'			PDU Type=1 (BACnet-Unconfirmed-Request-PDU)
X'0?'			Service Choice=?? (WriteGroup-Request)

X'09'			SD Context Tag 0 (Group Number, L=1)
X'17'			23
X'19'			SD Context Tag 1 (Write Priority, L=1)
X'08'			8
X'2E'			PD Opening Tag 2 (Change List)
 X'09'			SD Context Tag 0 (Channel, L=1)
 X'0C'			12
 X'22'			Application Tag Unsigned L=2 (value)
 X'0457'		1111
 X'09'			SD Context Tag 0 (Channel, L=1)
 X'0D'			13
 X'19'			SD Context Tag 1 (overridingPriority, L=1)
 X'0A'			10
 X'74'			Application Tag Charstring L=4 (value)
 X'00'			0 (Charset UTF-8)
 X'414243'		"ABC"
X'2F'			PD Closing Tag 2

Note that no response is required for this message since it is of type unconfirmed.

	7

image2.emf

Object

1

Object

2

Object

n

Device 1

Channel

Object

Object

1

Object

2

Object

n

Device n

Writing the same value to multiple ob jects using the Channel object

Writing Device

WriteGroup, WriteProperty , or WritePropertyMultiple service

oleObject1.bin

WriteGroup,

WriteProperty,

or

WritePropertyMultiple

service

Object

Channel

Writing

Device

Device n

n

Object

2

Object

1

Object

Device 1

n

Object

2

Object

1

Object

Writing the same value to multiple objects using the Channel object

image3.emf

Object

1

Object

2

Object

n

Device 1

Channel Object

Group 27, Chan 11

Writing Device

WriteGroup Group 27, C hannel 11

Object

1

Object

2

Object

n

Device 2

Channel Object

Group 14, Chan 11

received by both devices...

... only executed by Device 1

oleObject2.bin

...only executed by Device 1

Writing

Device

received by both devices...

Group 14, Chan 11

Channel Object

Device 2

n

Object

2

Object

1

Object

Group 27, Chan 11

Channel Object

WriteGroup Group 27, Channel 11

Device 1

n

Object

2

Object

1

Object

image1.jpeg

